Setting Protocol for Management of Traumatic Brain Edema

Setting Protocol for Management of Traumatic Brain Edema

Dr. Abubakr Darrag Salim Ahmed MD *1,Dr. Moaz Ibrahim Abdallah Mohamed MBBS 2, Dr. Mohammed Awad Elzain Ahmed MD3

 

1,2,3. National center for neurological sciences   Khartoum Sudan.

 

*Correspondence to: Dr. Abubakr Darrag Salim Ahmed MD National Center of Neurological Sciences, Federal ministry of health, Nile street Khartoum, Al amarat

 

Copyright

© 2023 Dr. Abubakr Darrag Salim Ahmed MD. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Received: 04 September 2023

Published: 30 September 2023

DOI:10.1027/marne.2023.0257

 

Abstract

Traumatic  brain edema is a  serious  complications  that  might  affect  patients  with  cranial injury,  it may  be   associated  with  aggressive   morbidity  and mortality , the traditional management  of  the  brain edema does not  concentrate  on controlling  the  amount  of the  fluid  reaching the  brain ,  and  concentrate  only  in maintaining  adequate brain  tissue perfusion   neglecting the  possible  harmful effect of  the  excess fluid  on  the  edematous  brain tissue.

 

Aims of the study are to:

1- Study  the  effect  of  using   a  combination  of  ways  to  control  the  fluid content  of  the  brain  and  body  to  achieve  good  outcome  in   the  patients  of   traumatic brain edema .

2 - Set a protocol to manage the patients using different ways of controlling the fluid amount in the brain.

 

Patients and methods: All  patients admitted  to  the  author's unit in the  neurosurgical departments in  Alshaab teaching  hospital , Ibn Khaldon hospital , and Doctors hospital all based  in  Khartoum  Sudan  ,   with  history of recent  head injury  and loss of  consciousness  and then CT scan  diagnosis of brain  edema , in  the  period  from  August  the  first  2006  to  the  end  of September 2010 ( four years period ) .

Criteria of patient’s admission to the study are:-

1-   History of recent head injury either direct or indirect.

2-   Loss  of  consciousness  immediately  following  head  injury with Glasgow coma  scale of 12  or  below .

3-Absence of any other primary apparent intracranial brain injury clinically or radiologically.

4- I.C.U. patient admission.

5-  Specific  protocol  of  15  steps  was  followed  in  all patients  consisting  of administration  of  Furosemide , Oxygen , controlled amount  of  fluid ,Piracetam   and other specific drugs  with  specific  follow  up

 

Results

40  patients  were included  in  this  study  , 32.5%  were below  the  age  of  18 years and  the  mean  age  was  21  years  ,  most  of  the  patients 82.5% were  males.

In 92.5%  of  the  patients  the  cause  of  the  trauma  was  road traffic  accidents  while  in  7.5 %  it  was fall from  heights.

The main presenting  symptom  was  loss  of consciousness following  the insult  in 97,5%, scalp lacerations  in  37.5%, vomiting in  37.5% bleeding from  nose  mouth  or  ears  in 32.5% and seizers in  15% of  the  patients.

In  27.5%  the Glasgow coma  scale  on  admission  was  below 8, while  it was from 9 - 12 in 55% and  above 12  in 17,5%.

The CT brain finding was  severe  brain edema in 55%  or moderate  brain edema in 35%  and  mild in  only  10% of  the  patients.

The  final  outcome  of  the  patients  was   Complete  cure  in  75%.

Partial   improvement in 15%, 10% died the causes of death are mostly not directly related to head injury or to its sequel.

 

Conclusions:

1- Fluid control  in  brain  edema  is  a flexible  method in  managing  this  condition with good  outcome .

2- Multidisciplinary   approach is very valuable way in managing traumatic brain edema.

3- Close  and  frequent  follow up with flexible  adjustments  of  the  various drugs and amount of the fluid  used  in  this  method  is  the  key  factor  in  achieving  good  outcome in  those  patients.

 


Setting Protocol for Management of Traumatic Brain Edema

Introduction

Brain edema is defined as an abnormal accumulation of fluid in the brain tissue accompanied by an increased volume of the brain. It usually results in the increase of intracranial pressure that may affect patient’s life[1]

 

Brain edema may compromises maintenance of the cerebral blood flow. But primary blood flow disturbances may lead to brain edema. The mechanisms underlying the blood flow impairment by brain edema are associated with an increased  water accumulation in the parenchyma[2].

 

Brain edema that usually follows blood-brain barrier disruption, is called vasogenic edema, this is present in most patients of brain edema. According to the Starling's law, water, ions and plasma proteins cross the blood-brain barrier toward the interstitium if the driving forces for transmural bulk flow are excessive and/or if the blood-brain barrier permeability is increased. Both mechanisms are present in most patients. Excessive increment   of the gradient of hydrostatic pressure with loss of cerebral auto regulation has been incriminated as  a cause  of ischemia in  traumatic brain  edema  patients[3].

 

Water acts as a solvent for electrolytes to influence the molecular configuration, this enhance enzymatic function in particular of polypeptide chains in biological systems. Water and electrolytes determines the osmotic regulation of cell volume this play great role in establishment of the transmembrane ion concentration gradients which in turn induce nerve excitation and impulse conduction. Fluid in the central nervous system is distributed in the intracellular and extracellular compartments of the brain parenchyma, the cerebrospinal fluid, and the vascular compartment of the brain arteries and veins and small capillaries. The exchange of fluid occurs across blood-brain barrier, at the ventricular Ependyma , choroid plexus and, on the brain surface, at the pia mater. The normal blood-brain barrier is relatively permeable to water, but considerably so less to ions [4].

 

The capillary endothelium isolates the extracellular fluid space in the central nervous system from the plasma. The combination of physical and enzymatic mechanisms which prevent macromolecules, polar solutes, neurotransmitters, peptides, and electrolytes from passively entering the brain is the blood-brain barrier. Specific mechanisms facilitate transport of ions across the blood-brain barrier and active secretion of extracellular fluid and cerebrospinal fluid maintaining homeostasis for nutrients and for cation and hydrogen ions respectively. Consequently, interstitial fluid volume in the central nervous system does not increase when the total extracellular fluid volume is increased. Total tissue volume is sensitive to osmotic forces, while oncotic forces are relatively unimportant[5].

 

The appropriate administration of intravenous fluids in neurosurgical patients remains an area of disagreement between neurosurgeons and anesthetists. Fluid restriction has long been advocated by the neurosurgeons in cerebral edema and is believed to reduce or prevent the formation of cerebral edema

 

But such restriction may lead to hypovolemia which in turn can result in hemodynamic disturbances. The brain homeostasis should be aimed for through adequate fluid administration and normal or slightly elevated mean arterial pressure. The properties of the endothelium differ between the brain and the reminder of the body[6].

 

Late posttraumatic circulatory changes are caused mainly by brain edema. This has an important influence on cerebral blood flow and cerebral microcirculation.

 

Mortality is high among patients developing post-traumatic brain edema and increased intracranial pressure following severe head injury. Although routine treatment varies from one center to another it often includes one or more of such measures as hyperventilation, high-dose barbiturate therapy, osmotherapy or the drainage of cerebrospinal fluid[7].

 

The preservation of high cerebral perfusion pressure is fundamental to traditional treatment  of  cerebral  edema , this is  usually combined with inotropic support, as ischemia is considered to be a crucial factor with regard to the  secondary injury and development  of brain edema [8, 9]

 

Piracetam was found to have great role in recovery of the cortical bioelectrical activity disturbed by traumatic brain edema. The beneficial effect of Piracetam is probably due to an optimization of the functional state of the brain since Piracetam enhances brain excitability[10].

 

Aims of the study is to:

Study  the  effect  of  using   a  combination  of  ways  to  control  the  fluid content  of  the  brain  and  body  to  achieve  good  outcome  in   the  patients  of   traumatic brain edema .

Set a protocol to manage the patients of traumatic brain edema.

 

Patients and Methods

All  patients admitted  to  the  author's unit in the  neurosurgical departments in  Alshaab teaching  hospital , Ibn Khaldon hospital , and Doctors hospital all based  in  Khartoum  Sudan  ,   with  history of  recent head trauma ( within 72 hour ) and loss of  consciousness  and then CT scan  diagnosis of brain  edema , in  the  period  from  August  the  first, 2006  to the end of   October 2010 ( 4  years   period ) .

 

Criteria of patient’s admission to the study:-

1-   History of recent head injury either direct or indirect.

2-   Loss of consciousness immediately following head injury.

3-   Absence of other primary apparent major   intracranial brain injury clinically and radiologically.

4- I.C.U. patient admission.

 

Radiological features of brain edema:-

1- Obliteration or effacement of brain surface sulci. (Mild brain edema)

2- Obliteration or effacement of the ventricular system. (Moderate brain edema)

3- Obliteration or effacement of the basal cisterns around the brain stem. (Severe brain edema)

 

Patients management protocol

1- I.C.U.  Admission.

2- Oxygen therapy

3- Elevation of the head of the bed by 30 – 45 degrees.

4-  Ceftriaxone injections  in case of  presence  of features of  fracture  base  of  the  skull , wounds,  or  chest crepitation.

5- Nasogastric fluids feeding 2500 - 3000 ml per day for adults groups, and 1500 to 2000 ml per day for pediatric group or according to age.

6-  Daily check  for input and  output of the  fluids and  correction of  the deficits  to be  around 1000 ml  either positive or  negative .

7-  Furosemide  injections according  to patient's  age and  severity of  the  edema for  adults it  was 40 mg intravenously  twice a day .

8- Basal and frequent check of serum urea and electrolytes once or twice a day.

9- Piracetam   and multivitamins after patient's recovery  to  more  than  13  G.C.S. and  there after till  the  maximum recovery  .

10-  Ranitidine  50 -100 mg or Omeprazole  40  intravenously  twice a day  to  guard  against stress ulcers .

11- Chloramphenicol   eye drops 3-4 times a day.

12- Haloperidol 1.5 – 5 mg twice to three times a day may be prescribed in cases of severe irritability.

13-  follow  up CT scans in  cases  of  delayed  recovery or  deterioration of  the  patient’s neurological  state.

14- Glasgow Coma Scale  (G.C.S)  and Glasgow  outcome  score  at discharge and  follow up at 2 weeks  after  discharge and then at  monthly follow up .

15- Discharge when reaching G.C.S.  14 or 15 and with free oral feeding.

16-  follow  up  two  weeks  after discharge  and  then  at  monthly  interval till full recovery .

 

Results

In  the study  period ( from 01. 8. 2006 to 27. 9. 2010)   forty patients  with  traumatic brain  edema  were  admitted   under  the  author’s care  in public and  private  hospitals  representing  all patients  of  traumatic  brain  edema  under  author’s care  during  that  period.

Patients age was  ranging  from  2 to 44  years  with  mean  age ,  median  age  was  22.50   and  mean  age  was  21.89 .  Table (1)

The sex  distribution  was  as  follows  33  patients  were  males  82.5%  and  7  patients  17.5%  were  females  . Figure (1)

The  main  presentation  was  Loss  of  consciousness  in  39  patients  97,5%  mostly  from one  day to  less than three days  in  33 patients  82.5%    some  lost  consciousness  for  less  than  one  day but  more  than  one  hour  5 patient 12.5%  only  one  patient  lost  consciousness  for  more than  one  month . Table (4)

Other presenting  symptoms  include  scalp wound  in  15 patients   37.5% and  vomiting in  15 patients   37.5% , bleeding  from  either  nose  or  mouth  or  ears  in  13 patients  32.5% and seizers  in  6  patients  15%  ,  rare symptoms  include  fever  and  psychological changes .

 

Vital signs and systemic review

Vital  signs  were  normal  in  most  patients  38  patients  95.0%  ,  but  in  some  patients  there  were  associated  systemic  problems  such as   chest  problems  in  8 patients  20%  which  is  mainly   crepitation  due  to  inhalation  or  injuries  ,  limb  injuries  were  present  in 7 patients  17.5%  , abdominal injuries  in  4 patients  10%  ,  there were  also  associated backache  and  cranial  nerves  palsies  each  in  3  patients  7.5% . Abnormal pupils were found in 8 patients 20%.

 

The CT findings in the patients

The main   CT  findings  in  the  patients  was brain edema  as the  sole finding  in  33 patients  82.5%  ,  the  degree  of  the  edema  was  severe  in  22 patients  55%, moderate in  14 patients   35% ,  or  mild  in  4  patients  10%  .Table  (5&6)

On  the  other hand it was observed that   in  7 patients  the  edema  was  associated  with  other  intracranial  pathology  like subdural or  epidural hematomas  or  subarachnoid  hemorrhage ,  cerebral  contusions  or  aerocele.

Five  patients 12.5%   were  subjected  to  surgical  interventions  mainly  for  the  complications  or  the  associated  pathology burr holes evacuation  of  hematomas  in  2  patients  or orthopedic  fixation  of  fractures in  3  patients 7.5%.

 

The final  outcome

The  final  outcome  in  the  40  patients  was  as  follows

Full cure in 30 patients 75% (fully conscious GCS 15, without any residual neurological deficit).

Improvement in 6 patient 15% of them 4 were independent 10% and 2 were dependent 5%.

Death in  4  patients  10% ,  the  causes  of  death  were  found  not  directly  related  to  head  injury in  most of the cases   as it  was  as  follows: gastrointestinal  bleeding  , pulmonary  embolism  ,  cardiac  arrest  may  be  due  to cerebral  herniation  and respiratory  failure .

 

Complications

No  complications  were  encountered  in  30  patients  75% ,  the  complications  occurred  were  manumitted  limb  fracture  in  2  patients  5% ,  and  facial  palsy  in  2  patients  5%  ,  and  other  rare sporadic  complications .  till  the  present  time  29 patients 72.5% were in  follow up   while  7 patients 17.5%  lost    the  follow  up and  4  patients  died .  See   table (7).

 

Discussion

Brain  edema is   a  very  serious  insult  that might  affect some  of  the  patients with head  trauma  , it might  be  associated  with  severe  of damage to  the  brain with subsequent morbidity  and  mortality[8].

 

The  seriousness of  brain edema lie in  the  fact that  it increases the  intracranial  pressure which  in  turn impair  the  cerebral perfusion which leads to  accumulation of  the  metabolites which in  turn  cause  more edema [1, 2].

 

The  cause of  brain edema  in  head injured patients  is  proved  to  be due to disruption  of  blood-brain barrier[3] ,and to  dysfunction of  the aqua   purine water  channels  in  the  brain , and vascular  endothelial growth  factor these changes lead to escape of  the  intravascular fluid to  the  interstitial  space with resultant compression  on  the tiny blood  vessels which  in  turn lead  to tissue and  cells  ischemia and accumulation of  tissue metabolites[5, 11, 12].

 

Although the most recent radiological investigation for diagnosis and follow up of  the patients of  brain edema  is  M.R.I. of  the  brain ,   CT proved   a  role since  it  is  the  mode  of  investigation usually  available for  head  trauma  patients [13, 14]    . 

 

The changes that might be noticed in  the C.T scans of  the  Patients with  Brain edema  are effacement or obliteration of the subdural space and  brain  sulci in  mild  brain  edema , ventricular narrowing in the  moderate  brain  edema , and  finally basal cisterns obliteration  in  the  severe  type .


Although  there are many  managements for brain edema like  hyperventilation , oxygen therapy  , Barbiturates osmotherapy  and diuretics, cerebrospinal fluid drainage  and  even surgical  decompression[8], but it is  a fact that the  principle cause of  brain edema is  water disturbance secondary to disturbed   blood-brain barrier  and the main effort in  managing patients with  brain edema should be directed  toward  the  cause  and  not toward the  secondary  effects ,  although  one should not neglect those  secondary effects  since  they are sometimes more serious than the primary  cause .


The  insult  to  the brain caused  by  brain  edema  is  most  probably  not  present  from the  start  and it  might  occur  as  the  brain edema advance and  compress  the  brain ,  this insult  is  most  probably  preventable  if  there  is  a  way  to  control  the  edema  so  as  not  to  reach  a  serious  level threatening  the  perfusion  of  the  vital  areas  of  the  brain.


In this study the author concentrates on fluid  control and  not fluid restriction[8].  So the patient is  given the daily requirement not more not less with nasogastric tube  or  orally  if  possible   so as the fluid should contain the enough nutrients for  the patient at the  same time the vital parameters  specially the  urine   output ( which  should  be  more  than 0.5 mL/kg/hour for  the adults  or more  than 1 mL/kg/hour  for the  children)  and the blood  pressure  ( not  less  than 100/60 for  the  adults ) should be kept  close to  the normal as  much as  possible by drugs  administration in the  different situations.


The  role  of  Furosemide  here is to  decrease  the  watery  part of  the  circulating volume  so  as  not  to  accumulate  in  the  brain  with  disturbed   blood-brain barrier at  the same time  to  help the  wash of  the  metabolites by creating  the  need  for  an excess  of  fluid.


The fluid chart  of  the   patient should be observed and  only  a difference  of  +\- 500 -1000  ml per day between  the input  and  the output  is allowed otherwise  is  either to  increase the amount  of the  fluid by an amount equal to  the positive balance or  to  decrease it by  an  amount equal  to  the negative  balance for  that  day. the  close  monitoring  of  the  fluid  chart  is  the  most  vital  part  of  this  study so  six  or at  least  12 hourly  check  and  observation for  the  chart  although the  author  used  not  to  interfere  to  adjust  the  fluid imbalance  except every  24  hours.


In general a flexible   balance should be kept between the following factors:

The  need  for  the  fluid  to maintain  the  perfusion  for  the  brain and  the other vital  organs  specially  the  renal  system and to counteract the  harmful  effect   of  the  presence  of an  excess  amount  of  water  in  the  brain with  disturbed   blood-brain barrier and other side effects of the administered drugs like electrolytes imbalance.

Other  combinations  of  physical  factors  such  as  head  elevation  by 30 – 45 degrees and oxygen  administration should  be  utilized,  to insure the  maximum oxygen delivery  to  the  brain regardless  of  the  peripheral oxygen pulse oximeter  readings, since  those readings  reflect  the  peripheral tissue  saturation and  not  the  cerebral  saturation which  is  expected  to  be  less  due  to  the  effect  of  the  cerebral  edema on  the  cerebral  perfusion .

Concentration on the  meticulous  and  close  observation of  the  brain edema  patients  and  the  immediate  and  appropriate  intervention  when  there are  any  disturbances as regard the fluid and electrolytes  balance and the  renal functions is  crucial, the consciousness and  pulmonary  functions  of  the  patients  using  the  biochemical, radiological and drug therapy  to correct any  abnormalities .

Other  drugs  to prevent  the  complications  due  to  head  trauma   like  Chloramphenicol  eye drops  to  prevent conjunctivitis,  which  might  also  lead  to  misinterpretation of  the eye response in Glasgow coma scale.

The use of  the Glasgow  outcome  score  as  a  universal  method  to  check  the  outcome  of  the   patients was  used to access the  outcome achieved  in  this  study  is  satisfactory  since  from  the  40  patient who represent the  total number  of  the  patients  followed  during  the  study period and satisfying  the  study  criteria  and  included  in  this  study  there four  mortalities  due to  causes which are  not  directly  related to head trauma, while on  the  other  hand the morbidity condition are  minor  problems and  does  not  endanger   patient's lives severely.

 

Conclusions

Brain edema following head trauma is a serious condition that require aggressive management.

Fluid control in brain edema is a flexible method in managing this condition with good outcome.

Multidisciplinary   approach is very valuable way in managing traumatic brain edema.

Close  and  frequent  follow up with flexible  adjustments  of  the  various drugs used  in  this  study  is  the  key  factor  in  achieving  good  outcome in  those  patients.

 

Tables and Diagrams and Images

(Please  view attached pdf to view all tables and figures)

 

References

1.Kozler, P., et al., [Pathophysiology and clinical aspects of brain edema]. Cas Lek Cesk, 2002. 141(18): p. 571-4.

2.Murr, R., et al., Relationship of cerebral blood flow disturbances with brain oedema formation. Acta Neurochir Suppl (Wien), 1993. 59: p. 11-7.

3.Payen, J.F., et al., [Brain oedema following blood-brain barrier disruption: mechanisms and diagnosis]. Ann Fr Anesth Reanim, 2003. 22(3): p. 220-5.

4.Disalvo, E.A., et al., Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta, 2008. 1778(12): p. 2655-70.

5.Archer, D.P. and P.A. Ravussin, [Role of blood-brain barrier in cerebral homeostasis]. Ann Fr Anesth Reanim, 1994. 13(1): p. 57-61.

6.Ravussin, P.A., et al., [Treatment of hypovolemia in brain injured patients]. Ann Fr Anesth Reanim, 1994. 13(1): p. 88-97.

7.Czernicki, Z., [Changes in cerebral blood flow and microcirculation caused by cranio-cerebral injuries]. Neurol Neurochir Pol, 1991. 25(5): p. 665-70.

8.Grande, P.O., C.H. Nordstrom, and B. Asgeirsson, [Current alternative therapy of post-traumatic brain edema]. Nord Med, 1994. 109(5): p. 157-9.

9.Klockgether-Radke, A., et al., [Polytrauma following a fall from a great height. The injury pattern and the intensive medicine aspects]. Anasthesiol Intensivmed Notfallmed Schmerzther, 1992. 27(1): p. 37-41.

10.Moyanova, S., R. Nikolov, and S. Dimov, Effect of piracetam on the electrocorticogram after traumatic brain oedema in cats. Methods Find Exp Clin Pharmacol, 1985. 7(12): p. 623-6.

11.Papadopoulos, M.C. and A.S. Verkman, Aquaporin-4 and brain edema. Pediatr Nephrol, 2007. 22(6): p. 778-84.

12.Vajda, Z., et al., [Aquaporins in cerebral volume regulation and edema formation]. Orv Hetil, 2001. 142(5): p. 223-5.

13.Gwan, K. and H.T. Edzes, Water in brain edema. Observations by the pulsed nuclear magnetic resonance technique. Arch Neurol, 1975. 32(7): p. 462-5.

14.Schuhmann, M.U., et al., Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol Res, 2003. 25(5): p. 481-91.

mahjong maxwin cakar76mahjong scatter emaspola gates olympuspola starlight princessrtp sweet bonanzarm akun pro rm1131 wins 3rm berani coba berani menang mahjongrm bosan hidup membosankan main mahjongrm buruan coba game mahjong ways 2 jam ghacorcnn499cnn450cnn497cnn498cnn493cnn494cnn495cnn496jackpot brutal mahjongmahjong daftar disinimahjong free spinssmember mahjong jackpotmodal receh jutaankeberuntungan mahjongkekuatan mistis mahjongkuasa memanggil mahjongoptimalkan penglaman mainpelangi pelangi mahjonggame kakek zeusgame mahjong scattergates of olympuskakek zeus maxwinmahjong hitam gacormahjong scatter hitamtrik maxwin mahjongstarlight princess jackpotpgsoft mahjongtrik mahjong puluhan jutaracikan maxwin mahjong wayspg soft mahjong scatterjepe permainan mahjongraja game online mahjonganalisis pola scatter mahjongmahjong atau starlight princessjackpot meledak maksimal mahjongpola menang mahjongtrik ganas mahjongmahjong trik rahasiamahjong ways scatter brutalpemenang mahjong wayscahaya bersinar mahjongkenalilah ganesha fortunetemukan variasi starlightvolatilitas ekstrem mahjong waysvolatilitas tinggi maksimalcaishen mahjongsial mahjongcnn488cnn489cnn490cnn491cnn492maxwin permainan mahjong wayssitus mahjong terpercayamahjong wins pg softscatter mahjong naga emaspola mahjong hari inicakar76 anti boncosmahjong anti rungkadmahjong gampang menangmahjong wins maxwinpragmatic play cakar76rtp cakar76 akuratscatter kucing emasscatter mahjong wayssitus cakar76 maxwinmahjong ways anak gen zcuan cepat mahjong waysvolatilitas tinggi mahjong waysalgoritma ai mahjongmodal kecil mimpi besar mahjongdapatkan permainan mahjonginfo terbaru mahjong wayspermainan mahjong scatter hitampola jitu anti kalahterbukti jitu perkalian mahjongalasan coba mahjongjamin seru mahjonggates of gatotkacaamarah zeussamudra hokimahjong wins 3olympus ghacorhidup 180 derajatinvestasi tempat pastiinvestasi ringan dahsyatrm makin gacor makin cuan mahjongrm menang tanpa henti mahjongrm mengalir seperti air caishenrm mengejar impian jackpot game pgsoftagen situs mahjonggame online mahjonglangkah spin mahjongmeledak juta mahjongtrik baru mahjongcnn484cnn485cnn486cnn487mahjong free spinsmahjong ghacor perkalianmahjong ways momentmeraih scatter mahjongstarlight princess hokiinvestasi mahjong wins pragmatickesempatan di mahjong winsjelajahi mahjong wins 3liburan gratis mahjong winsmahjong ways rahasia besardaftar game mahjong onlinemahjong ways game terbaikpola anti bocor mahjongscatter hitam game mahjong