Baseline Characteristics and Outcome of Patients with Heart Failure and Preserved Ejection Fraction Included in an Algerian Cohort
Assia Haddad (MD)1,2, Mohamed Karim Guerchani (MD)3, Nadia Ould Bessi (MD) 4,
Dalila Djermane (MD)1,5, Omar Ait Mokhtar (MD, PhD)1,5, Hakim Himeur (MD,PhD)²,
Abdellaziz Dahou (MD, PhD)1, 6, Salim Benkhedda (MD, PhD)*1, 5.
1. Cardiology Oncology Research Collaborative Group. Faculty of medicine,
BENYOUCEF BENKHEDDA university of Algiers.
2. Mohamed Abderrahmani Specialized Hospital. Cardiac surgery department.
3. Mustapha Bacha University Hospital,;Epidemiology department.
4. Mustapha Bacha University Hospital; Pierre and Marie Cury Center, Biochemistry department.
5. Mustapha Bacha University Hospital. Cardiology department. Faculté de Médecine
BENYOUCEF BENKHEDDA university of Algiers
6. St Francis Hospital, The DeMatteis Center for Cardiac Research and Education, New York, USA
Corresponding Author’s: Dr. Abdellaziz Dahou (MD, PhD), St Francis Hospital, The DeMatteis Center for Cardiac Research and Education, New York, USA
Dr. Salim Benkhedda, (MD, PhD), Mustapha Bacha University Hospital. Cardiology department. Faculté de Médecine, BENYOUCEF BENKHEDDA university of Algiers
Copy Right: © 2022, Dr. Salim Benkhedda, MD, PhD, This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Received Date: October 17, 2022
Published Date: November 01, 2022
Abstract
Background: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous disease with a complex pathophysiology. Clinical presentation depends on comorbities and dominant etiology. This work aims to describe the baseline characteristics and outcome of an Algerian cohort of patients with HFpEF.
Patients and methods: A prospective observational study from April 2018 to April 2020, including patients aged 18 and over, referred to the echocardiography laboratory for HFpEF as defined according to the ESC 2016 criteria. Comprehensive Doppler echocardiography was performed at admission and levels of N-terminal Pro B-type Natriuretic Peptide (NT-proBNP) and Growth Differenciation Factor 15 (GDF 15) were measured. The outcome of the study was a composite endpoint of death from any cause, rehospitalization for HF or stroke at 1 year.
Results: 153 patients were enrolled. The mean age was 73 ±11 years, and 67% were female. Patients were very frequently hypertensive (86%) and diabetic (64%) with a history of atrial fibrillation (46%), anemia (42.48%), chronic renal insinsufficiency (CRI) (38.56%), and obesity (35.76%). Among the echocardiographic parameters, left atrial dilatation was found in 80% of cases, Left ventricular hypertrophy (LVH) in 74% of cases and an E/é ratio > 13 in 69% of cases. Sixty-three percent of patients had an impaired global longitudinal strain (GLS < 16%) despite preserved LVEF (59% ±7%).
The median value of NT-proBNP was 1284 (Interquartile range [IQR]: 442-3109) with extremes ranging from 133 to 35000 pg/ml. The median value of Growth Differentiation Factor 15 (GDF 15) was 2530 (IQR: 1492-3929) with extremes ranging from 400 to 25632 pg/ml, and 87% of patients had a GDF 15 level > 1200 pg/ml.
At one year follow up, rate of rehospitalization for heart failure and mortality were 5.9% and 13.7% respectively. Nearly half of deaths (45%) were from non-cardiovascular causes. The independent prognostic factors associated with one year outcome (composite endpoint of rehospitalization for HF, death from any cause or stroke) were: signs of peripheral venous congestion, anemia, and pulmonary artery systolic pressure at admission (all p<0.05). GDF 15 and NT-proBNP were associated with outcome in univariable but not in multivariable analysis.
Conclusion: The patients included in our cohort are mainly elderly and hypertensive women, and more than half were diabetic. Majority of patients had impaired longitudinal strain with increased LV mass, impaired diastolic function, and high levels of GDF 15. The independent prognostic factors associated with one year outcome were: signs of peripheral venous congestion, anemia and PASP.
Keywords: Heart failure with preserved ejection fraction; Echocardiography; comorbidities, outcome.
Abbreviations
ACE: Angiotensin conversion Enzym
AF: Atrial fibrillation
ARB: Angiotensin Receptors Blockers
ARNI: Angiotensin Receptors Neprilysin Inhibitors
BMI: Body Mass Index
BNP: Brain Natriuretic Peptide
CI: Confidence intervall
CR: Chronic renal insufficiency
COPD: Chronic obstructive pulmonary disease
Cor: Pearson's product-moment correlation
EF: Ejection fraction
ESC: European Society of cardiology
GDF: Growth Differentiation Factor
GLS: Global longitudinal strain
HF: Heart failure
HFpEF: Heart failure with a preserved ejection fraction
HFrEF: Heart failure with a reduced ejection fraction
LA: Left atrium
LAV: Left atrial volume
LV: Left ventricle
LVEF: Left ventricular ejection fraction
LVH: Left ventricular hypertrophy
LVM: Left ventricular mass
MACE: Major acute cardiovascular events
6M-WT: 6 Minutes’ Walk Test
NT-proBNP: N terminal pro Brain Natriuretic Peptide
Pg: Picograms
Rho: Spearman's rank correlation
SD: Standard deviation
Introduction
Heart failure (HF) is a global public health issue because of its high prevalence, morbidity and socio-economic impact on the health system. Due to the sudden rise in prevalence and hospitalizations between the 1970s and 1990s, it is commonly referred to as an "epidemic". [1,2]
HF with preserved ejection fraction (HFpEF) accounts for 40 -70% of heart failure cases. [3,4] It is one of the leading causes of morbidity and mortality with a significant impact on quality of life, comparable to that of heart failure with reduced ejection fraction (HFrEF). [5] The prevalence of HFpEF increases with population aging, with a simultaneous increasing prevalence of co-morbidities including hypertension, obesity and diabetes. Labeled as an “orphan disease”, many uncertainties remain about it. The perception of the HFpEF as a heterogeneous and complex entity, depending on the dominant etiology and the various comorbidities, could largely explain the failures of the clinical trials. [6,7] In this report, we describe the clinical aspects, echocardiographic characteristics and the outcome of an Algerian cohort of patients with HFpEF. The description is based on the definitions and threshold values published by the European Society of Cardiology in 2016 on the HFpEF.
Methods
This is a single-center prospective observational study conducted between April 2018 and April 2020, which consecutively included adults patients (≥ 18 years) referred to the echocardiography laboratory of the cardiology department A2 of Mustapha Bacha University Hospital (Algiers, Algeria), in whom the diagnosis of HFpEF was retained according to the criteria of European society of cardiogy (ESC) 2016. Namely, the presence of signs and/or symptoms of heart failure , a rate of N-terminal (NT)-pro B-type natriuretic peptide (NT- proBNP) > 125 pg/ml or BNP > 35 pg/ml with at least one ultrasound criterion of structural heart disease (left ventricle mass ≥ 115 g/m² in men and ≥95 g/m² in women, indexed left atrial volume > 34 ml/m²) or functional abnormality (E/é ≥ 13 and e’ septal and lateral mean < 9 cm/s). Patients were excluded from the study if they had more than moderate valvulopathy, World Health Organization (WHO) class 1, 3, 4, or 5 Pulmonary arterial hypertension, right ventricular arrhythmogenic dysplasia, congenital heart disease, right ventricular infarction, pericardial disease: Tamponnade, constrictive pericarditis or specific cardiomyopathy: viral, inflammatory (Sarcoidosis), genetic (Hypertrophic Cardiomyopathy), restrictive cardiomyopathy. Comprehensive Doppler echocardiography was performed at admission (GE vivid 7) and blood samples were drawn. Patients were followed up to 1 year. The primary endpoint of the study was a composite of death, rehospitalization for heart failure or stroke at 1 year.
Statistical Analysis
Data were expressed as mean ± standard deviation (SD) or n (%) unless otherwise specified. Dichotomous variables were analyzed using chi-square test and continuous variables using Kruskal-Wallis rank sum test. Cox proportional hazard analysis was used to determine the independent prognostic power of each variable to predict the outcome. For all tests, a p-value ≤ 0.05 was considered statistically significant. All statistical analyzes were carried out using R 4.0 software.
Results
One hundred fifty-three consecutive patients were enrolled with a follow-up of one year. The mean age of the study population was 73 ±11 years (ranging from 42 to 91 years) and the majority of patients were female (67%). Baseline characteristics of the study population are presented in Table 1.
Co-morbidities, risk factors and clinical presentation
Patients were predominantly hypertensive (86%) and diabetic (65%) with a history of atrial fibrillation in 46% of them. 36% of patients were obese, 39% had chronic renal insufficiency (CRI), defined by glomerular filtration rate <60ml/min/1.73m², 26% had coronary artery disease (CAD), and 20% had chronic obstructive pulmonary disease (COPD) . Anemia (HB< 13 g/dL in men and < 12g/dL in women according to the World Health Organization (WHO) definition, was present in 42% of the population .
The majority of our patients had signs of isolated left heart failure (71%), ranging from dyspnea on exertion to orthopnea. Signs of peripheral venous congestion were noted in 29% of patients. 19% of patients were hospitalized for primary acute heart failure or worsening signs of congestive HF despite a therapeutic adjustment in the ambulatory setting, and the remaining (81%) were managed in the outpatient setting.
When comparing these factors and comorbidities according to gender (Table 2), we noted a statistically significant difference by gender in terms of smoking, Coronary artery disease, and the presence of CRI with a clear male predominance. On the other hand, the comparison of these comorbidities according to age (Table 3) showed a significant increase in COPD with age.
Doppler Echocardiographic measurements
Left ventricular ejection fraction (LVEF) varied from 50 to 77% with an average of 59% ±7%. The average indexed LV mass was 121± 38 g/m² with extremes ranging from 55 to 331 g/m². The prevalence of left ventricular hypertrophy (LVH) was 74% with eccentric type in 51% of patients. Isolated left ventricular remodeling with normal left ventricular mass was noted in 11% of cases, while normal left ventricular geometry was present in 15% of cases.
The average indexed left atrium volume(LAVI) was 48± 19 ml/m² with extremes ranging from 18 to 150 ml/m². 81% of patients had left atrial (LA) dilatation defined by a LAVI > 34ml/m².
The value of the average mitral E/e' ratio (Sepal and lateral) varied from 6 to 37 with an average of 15.8 ± 5. 61% of patients had an E/e' ratio > 14 while 94% of patients had an E/e' ratio > 9.
The peak velocity of tricuspid regurgitation (TR) ranged from 1.94 to 4.18 m/s with an average of 2.86 ± 0.43 m/s. 53% of patients had a TR peak velocity > 2.8 m/s.
The mean pulmonary artery systolic pressure (PASP) was 43mmHg with extremes ranging from 20 to 84 mmHg. 68% of patients had SPAP > 35mmHg.
The mean value of the global longitudinal strain (GLS) was 14.3% ±4.6) ranging from 3.2 to 24%. 63% of patients had an impaired longitudinal strain defined by a GLS ≤ 16%.
Comparaison according to gender showed a significantly higher E/e' ratio in women while the LV mass was significantly higher in men. That’s expected since the two genders have different cut-offs. Note that there is no significant difference in prevalence of left ventricular hypertrophy.
Blood biomarkers
Regarding blood biomarkers, the mean value of the NT- pro BNP was 2995 ± 5148 pg/ml with extremes ranging from 133 to 35000 pg/ml. Plasmatic concentration of Growth Differentiation Factor 15 (GDF 15) was available in 111 (73%) patients only. The mean GDF 15 value was 4102±4274 pg/ml with a range of 400 to 25632 pg/ml. 70% of patients had values > 1800 pg/ml and 13% had values between 1200 and 1800 pg/ml, while only 13% had values < 1200 pg/ml. High levels of GDF 15 were significatively associated with age (P=0.004, cor= 0.27) , diabetes (p=0.01, rho=0.24), CRI (P=0.0034, rho=0.44), anemia (P=0.003, rho=0.27), left atrial volume (P=0.002, cor=0.29), atrial fibrillation (P=0.001, rho=0.30), PASP(P=0.032, cor=0.37), NT-ProBNP ( P= 0.001, cor=0.49), and 6 minutes walking distance (P=0.0006, cor=-0.47)
GDF-15 was also sigificatively associated with the use of ACE inhibitors (P=0.02, rho= -0.21) , ARBs (P=0.20, rho= 0.210), and treatment with insulin (P-0.20, rho-0.21).
The 6-minute walking test: The 6-minute walking distance was performed in only 43% of our patients. The average walk distance was 265 ± 146 m, ranging from 100 to 512 m, with a walking distance < 300 meters in 53% of patients. Walking distance decreased inversely with age, especially in women.
Medication
With regard to the medical treatment, nearly 90% of patients were under angiotensin receptor antagonists or Angiotensin converting enzyme inhibitors, and 81% were under diuretics. 63% were on beta-blockers, 46% were on statins, 38% were on anti-platelet agents, 31% were on calcium channel blockers, 25% were on Spironolactone, and 6% were on digoxin.
One year outcome
A total of 58 major adverse cardiac events (MACE) including death from any cause, hospitalization for heart failure or stroke were recorded during one year of follow-up, representing a rate of 38%. One year mortality was 13.73%, with nearly hal of cases (45%) from non cardiovascular cause. The rehospitalization rate for heart failure was 5.9%.
In univariable analysis, factors that were associated with the occurance of MACE at one year were: signs of peripheral venous congestion, chronic renal failure, anemia, obesity, atrial fibrillation (All P<0.05), indexed left atrial volume (P= 0.031), systolic arteriel pulmonary pressure (P= 0.0003), the levels of NT-ProBNP (P=0.033), GDF 15 (P= 0.006), as well as the 6 minutes walk-distance (p<0.05). After multivariate adjustment, the independent prognostic factors associated with one year outcome were: signs of peripheral venous congestion (P=0.003, Odds ratio [OR]=8.49), anemia (P=0.026, OR=2.53), and PASP(P=0.024, OR=1.04 per 1 mmHg increase).
Discussion
Our study prospectively included a population of patients with HFpEF as strictly defined by the criteria of the European Society of Cardiology of 2016. We discuss here in the findings of present study in the light of previous studies dealing with patients with HFpEF (Table 4).
Clinical, echocardiographic and blood biomarkers characteristics
The risk factors and co-morbidities of the patients included in our study were as described above, including patients with HFpEF with predominantly female, and a high prevalence of hypertension, diabetes, and atrial fibrillation. [9,10]
Despite a disparate distribution of co-morbidities with variations by study type (Registry, Randomized Controlled Trial, or community-based study), study population, and geographic region, the most common co-morbidities are hypertension, atrial fibrillation, chronic kidney disease, and diabetes with significant variability between studies.[8]. On the other hand, I PREFER study which included a population of patients with HFpEF from Latin America, the Middle East, and North Africa including Algeria, showed that the population of patients with HFpEF was older, with a predominance of women, obesity, hypertension, and atrial fibrillation compared to patients with reduced LVEF (HFrEF).[9] Our results highlight the high prevalence of hypertension among other risk factors [11,12, 13, 14, 15 ].
The prevalence of diabetes among patients with HFpEF varies widely, with extremes ranging from 5 to 60% depending on the series. [16 ,17] In our series, 66% of patients were diabetic, slightly exceeding the high prevalence series of diabetes. Its prevalence in other Algerian series varies from 45% in patients hospitalized for acute HF regardless of LVEF [18] to 49% in hypertensive patients with normal LVEF. [19] Regional variations in co-morbidities, lifestyle, nutritional patterns, activity, and genetic predisposition can explain these variations worldwide. Despite this high prevalence, diabetes does not appear to be a predictor of new cases of HFpEF, according to Ho and colleagues [20].
The prevalence of anemia in our series was 42%, in line with the results of some published reports indicating that anemia is also very common in this population of patients, with a prevalence varying according to studies and definition of anemia, ranging from 42% to 70%. [21].
The prevalence of chronic renal insufficiency (CRI) was 31%, 49% and 35% in the I-PRESERVE, DIG-PEF, and CHARM-preserved trials, respectively. Our results are in line with these data, since 39% of our patients had CRI.
Obesity was common in our series with a prevalence of 36%, which is consistent with data from previous studies [8, 9]. Obesity (BMI>30 kg/m2) is one of the most common co-morbidities in patients with heart failure and is one of the risk factors for the development of HFpEF. [22] It is common in both types of heart failure, but most studies show that it is more common in HFpEF than in HFrEF with a prevalence of 39% in HFpEF patients versus 27% in HFrEF patients [8]. Its prevalence also shows regional variability with a rate of 40-45% in the Middle East and North Africa, and 31% in Latin America. [9]
The prevalence of atrial fibrillation (AF) in our series was 46% at the time of diagnosis of HFpEF, similar to previous studies [23, 24, 25] which reported that atrial fibrillation is common in HFpEF with variability depending on study design and diagnostic methods (clinical diagnosis vs. Holter screening). In a meta-analysis of 66,357 patients, the prevalence of permanent AF appears to be slightly higher in patients with HFpEF compared to those with HFrEF (48 vs 44%). [ 26] The prevalence of Coronary artery disease (CAD) in patients with HFpEF is variable according to registries, definitions, and validation methods, ranging from 20% to 76% with an average of 41% [27]. A history of coronary artery disease (history of an acute coronary syndrome, revascularization, or significant coronary artery stenosis) was found in 26% of our patients.
Compared with men, women had lower prevalence rates of coronary artery disease and chronic kidney disease which is consistent with previous studies: PURSUIT?HFpEF [Prospective Multicenter Observational Study of Patients with Heart Failure with Preserved Ejection Fraction] [28], and APOLLON study [29].
Regarding baseline blood biomarkers, levels of GDF-15 were elevated (> 1200 pg/ml) in 87% of our patients and were found to be associated with 1-year outcome in univariable but not in multivariable analysis. Previous studies including larger number of patients have shown that higher GDF 15 levels were associated with worse outcome (all-cause mortality) in patients with HfpEF. [ 30] Thus GDF15, may provide complementary pathophysiological information supporting an independent role of inflammatory cytokine release (GDF15) in the pathophysiology of HFpEF, whereas NT-proBNP, reflects haemodynamic wall tension or stress. [31] Another finding in our study is the association of baseline levels of GDF-15 and the use of angiotensin-converting enzyme (ACE) inhibitors, which can support the hypothesis that GDF 15 may be an interesting biomarker for treatment responsiveness, by reduction of cardiac stress due to treatment leading to down-regulation of GDF15 levels. [32]
Treatment
In the absence of pharmacological treatment that have been shown to be really effective in patients with HFpEF, treatment is based primarily on agressive control of risk factors and co-morbidities and the treatment of signs of congestion by diuretics. According to the medication prescribed to patients included in our study, beta-blockers, diuretics, aldosterone antagonists, and other blockers of the renin-angiotensin system were prescribed in similar proportions to that of previous reports. [33, 34] The majority of our patients received diuretics (82%) and renin-angiotensin-aldosterone system inhibitors (89%). However, our series is distinguished by higher use of angiotensin receptor blockers (ARBs) over ACE inhibitors (67% vs 22%) and may reflect the potential benefit of this therapeutic class as suggested by the results of CHARM-Preserved and I-Preserved trials in patients with HFpEF.
Echocardiographic caracteristics
Left ventricular hypertrophy (LVH): Our cohort is characterized by a high prevalence of LVH, which was present in 74% of patients similar to other trials and registries such as the European PEP-CHF (Europe) [35] study and the American ARIC registry. [36]
Very few studies have distinguished LVH from ventricular remodeling. [8,37]. Fourty-seven percent of our patients had a relative wall thickness ≥0.42, similar to the data from the North African cohort of I-PREFER study which reported a prevalence of relative wall thickness > 0.44 of 40% [9], and those from the TOPCAT study [Aldosterone Antagonist Therapy for Adults With Heart Failure and Preserved Systolic Function], which reported concentric remodeling in 34% of cases, while the Latin American and Middle Eastern cohorts of the I-PREFERE study reported a higher prevalence of 66% and 61% respectively. [9]
Left atrial dilatation: Our series is characterized by a higher prevalence of left atrial (LA) dilatation (81%) compared to TOPCAT (53%) [38] and I-PRESERVE (66%) studies [39]. The CHARM-Preserve ultrasound substudy reported a left atrial indexed volume > 32 ml/m² in 71% of patients [40]. This high prevalence could be explained by the fact that left atrial hypertrophy increases with age, especially in patients with co-morbidities such as hypertension, diabetes, obesity, and atrial fibrillation,[41] which were common in our series.
Although the relationship between LA dilatation and LVH is not yet clear, it is possible that this high prevalence of LA dilatation is also related to the high prevalence of LVH. Indeed, Gavin et al, in their analysis of the TOPCAT sub-study, found that patients with high LV mass had a significantly higher LA volume than patients with low LV mass and low LVH prevalence.[42]
Diastolic dysfunction: In our study, approximately 60% of patients had an average E/e' ratio > 14 at rest, 69% had an E/e' ratio > 13. Our data align with those of the TOPCAT trial [34] and the echocardiographic substudy of CHARME-Preserved [36] and I-PRESERVE [35], which report a prevalence of diastolic dysfunction of 66%, 67%, and 69% respectively.
Similar to data from the echocardiographic substudies of the HFpEF randomized controlled trials (TOPCAT, I-PRESERVEand CHARM Preserved) one-third of our patients had a normal diastolic function at rest at the time of echochardiography. [34, 35, 36]
As expected, echocardiographic findings demonstrated differences in diastolic function status at rest between male and female. Women had higher LV filling pressure as evaluated by E/e’ ratio, and lower left ventricular mass than men, which is consistent with the findings of previous studies [31,43,44]. The PARAMOUNT trial (Prospective comparison of angiotensin receptor neprilysin inhibitor (ARNi) with angiotensin receptor blockers (ARBs) on the management of heart failure with preserved ejection fraction) was the first investigation that provided a detailed sex-specific analysis of LV structure, function, and mechanics in HFpEF [45], and showed that indexed LV mass was significantly lower in women with HFpEF, with a significantly higher E/e’ ratio.
Studies that have examined the correlation of this parameter to left ventricular filling pressures have shown that its use in routine clinical practice is subject to limitations, with a sensitivity of the algorithmic approach that vary very widely between 34% and 87% [45,46,47,48,49] according to the studies, which makes its use as the only echographic criteria for measuring the filling pressures of the LV not recommended.
Despite a preserved ejection fraction, 62% of our patients had an impaired global longitudinal strain (GLS < 16%) as previously described in a recent meta-analysis of 10 studies including 1810 patients with HFpEF and 462 asymptomatic controls [50]. The prevalence of longitudinal systolic dysfunction was significantly higher in patients with HFpEF with an average of 65% ranging from 37% to 95%, compared to only 13% (0% to 30%) in asymptomatic subjects. [48] We didn’t find any difference in LV longitudinal strain between women and men with HFpEF as described in the PARAMOUNT trial.
Younger patients with HFpEF had higher indexed LV mass compared with older patients. Atrial size increased with increasing age. Older age was associated with similar rates of abnormal relative wall thickness and abnormal filling pressures. Our results join data published from patients with left ventricular ejection fraction ≥45% from 3 large HFpEF trials (TOPCAT, I-PRESERVE, and CHARM preserved [51]
Older age was also associated with higher PASP in our study. These finding correlate with data that demonstrate that pulmonary artery systolic pressure increases with advancing age in normal adults, suggesting that age-associated blood vessel stiffening may contribute to these differences in pulmonary artery systolic pressure.[52]
Outcome
The mortality and hospitalization of heart failure (HHF) rate vary in HFpEF population according to the design of studies, patient status (hospitalized vs ambulatory) , the threshold used to define a preserved LVEF, and the inclusion end exclusion criteria. [53] Accordingly, mortality was higher in studies that included only hospitalized patients. [54,55].
In-hospital mortality varies from 2,4 % to 4,9 % [50] in observational studies, with slightly higher mortality at 30 days (5 %) and, 60 and 90 days (9,5 %), while the one-year mortality varies from 20 % to 29%. [56]. Our results showed slightly lower one-year mortality as compared to data from other studies, with a rate of 13.7%. indeed, our study included both inpatients and outpatients, but the vast majority were outpatients. There is also a change in the distribution of the causes of death towards non-cardiovascular causes in relation to an increase in non-cardiovascular comorbidities, [57] especially in HFpEF patients [ 58], emphasizing the key role of comorbidities in these patients [59]. In our study, 45% of deaths were from a non-cardiovascular cause.
Overall, 28-30% of hospitalizations in major HFpEF Randomized control trials [60] were related to HF, and patients with HFpEF seem to have an early risk of HF-specific hospitalization of ∼10–30%. In our study, the global rate of Hospitalization of HF was 5.9% only, perhaps because of a large proportion of ambulatory patients included in our study.
Conclusion
The majority of patients in our cohort are elderly and hypertensive women, more than half of whom have diabetes. Patients had a high prevalence of alteration in longitudinal systolic function with an increase in LV mass, an alteration in diastolic function, and high levels of GDF-15. The independent prognostic factors of one year outcome were signs of peripheral venous congestion, anemia and PASP.
References